Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add filters

Document Type
Year range
1.
IOP Conference Series: Earth and Environmental Science ; 1165(1):011001, 2023.
Article in English | ProQuest Central | ID: covidwho-2290438

ABSTRACT

Climate change has led to the increase of heat exposure or natural hazard due to extreme weather. This anthropological climate change phenomenon has negatively altered the most fundamental natural resources for living organism: air, water, and soil. Air has been polluted and warming due to human activities. The quantity of freshwater keeps on depleting, while the ground water recharge intervened with chemical and biological contamination. The sustainability of soil as the natural planting media is under threat due to land use conversion and soil quality degradation. Water acidification and temperature increase have been proved to change the salinity of seawater. Those are the impact of the increasing greenhouse gas emission in the earth's atmosphere.The 8th International Conference on Climate Change (ICCC) aims to accommodate and to discuss the regional findings related the adaptation and mitigation strategies on climate change worldwide. The meaning to hold ICCC is getting more and more important. This conference can alert the creeping disaster. The contribution of all the participants, distinguished guests to this conference would make our world better and progress our scientific knowledge. Sharing the insight into the recent research and the cutting-edge technologies should enhance our ability and it might give us the breakthrough ideas on our sustainability under climate change. ICCC would be fruitful for every participant and be a great chance to approach the scientific solution for our common goals.Faculty of Agriculture of Sebelas Maret University, Surakarta, Indonesia is very proud to organize the 8th International Conference on Climate Change (ICCC). International Conference on Climate Change has been playing a significant contribution to formulate the strategies to cope with the emerged problems due to the climate change, as well as to support the sustainable development goal achievement. Sebelas Maret University has been seriously taking part to minimize the climate change impact, by promoting environment-friend programs, such as the green campus program and prohibiting the motor-vehicle to enter the campus every month. Sebelas Maret University also realizes that the responsibility of maintaining this earth should be by everyone. Each of us plays a significant contribution to minimize the global warming of this earth. That is why Faculty of Agriculture of Sebelas Maret University organize such events to discuss the findings related the earth-protection.We hope this conference will resulting into valuable recommendations in focusing and improving the natural resources management as well as improving the human's living efficiency to bring the greenhouse gas emission down. We need to produce alternative technologies as the climatic resilience strategies to overcome the key climate-change sensitive pathways, as well as to support the achievements some global goals in the Sustainable Development Goals (SDG). Accordingly, the topic of the 8th ICCC is "Environmental Management towards Sustainable Development Goals (SDGs) under the Changing Climate”.The 8th ICCC was organized by Faculty of Agriculture, Sebelas Maret University, Indonesia, in collaboration with Asian Institute of Technology, Thailand and The United Graduate School of Agricultural Sciences, Gifu University, Japan. The 8th ICCC was held at The Asian Institute of Technology Conference Center, Thailand from 17-18 November 2022. The 8th ICCC was conducted in the Hybrid method because travel restrictions are still enforced by some countries to prevent the spread of Covid-19. Besides, providing options for attending the 8th ICCC virtually is more comfortable for participants and presenters with limitedness of budgets.The 8th ICCC 2022 delivers great appreciation to Prof. Dr. Samanhudi, Dean of Faculty of Agriculture, Sebelas Maret University, Indonesia;Professor Dr. Shobhakar Dhakal, Vice President for Academic Affairs, Asian Institute of Technology, Thailand;and Prof. Dr. Ken Hiramatsu, Dean of United Graduate School of Agricultural Science, ifu University, Japan;for formal support to the conference.Gratitude presented to the invited speakers: Prof. Dr. Avishek Datta from Head of Department of Food, Agriculture, and Bioresources, Asian Institute of Technology, Thailand;Prof. Dr. Eric van Hullenbusch from Institut de Physique du Globe de Paris, France;Dr. Taku M. Saitoh from Gifu University, Japan;Dr. Jauhari Syamsiyah from Sebelas Maret University, Indonesia;and Dr. James MacGregor from Eco-Plannet, Canada.List of Committee of the 8th ICCC 202 is available in this Pdf.

2.
Sustainability ; 15(5):4547, 2023.
Article in English | ProQuest Central | ID: covidwho-2287243

ABSTRACT

The source apportionment of pollutants is the key to preventing and controlling the pollution caused by heavy metals in soils. The aim of this study was to investigate the main sources of heavy metals in the soils of black shale areas in western Zhejiang, China. Based on geostatistical spatial analysis, this research employed positive matrix factorization (PMF) for the source apportionment of heavy metals in paddy soil. The results showed that contaminated arable soils were concentrated in the western and southern study areas. At least five major sources of heavy metals were screened in this study: natural sources (39.66%), traffic emissions (32.85%), industrial emissions (9.23%), agricultural activities (9.17%), and mining (9.10%). To be specific, Cd was mainly from mining;As originated from agricultural inputs such as fertilizers and pesticides;and Hg, as an industrial pollutant, was transported by atmospheric deposition in the study area. The accumulation of Pb, Zn, and Cu was mainly influenced by natural sources and anthropogenic sources, i.e., traffic emissions, while that of Cr and Ni was controlled by natural sources.

3.
IOP Conference Series. Earth and Environmental Science ; 1098(1):012016, 2022.
Article in English | ProQuest Central | ID: covidwho-2118176

ABSTRACT

The abundance of plastic waste in Indonesia has increased due to the contribution of disposable masks waste during the COVID-19 pandemic. The improper waste management causes the habit of dumping waste in the soil system to still frequently occur. The secondary microplastics from disposable mask waste has the potential to damage soil quality and soil capillary water. Therefore, this study was conducted with the aim of understanding the effects of disposable mask waste in peat soil. The research was conducted by setting up 3 reactors containing peat soil with disposable mask waste buried in it and some plants being grown on it. For 45 days, observations and samples were taken, both filtrate water and soil for analysis. The analysis results showed significant changes in soil properties with changes in the concentration of inorganic matter, organic matter, porosity, bulk density, and water content. Further research needs to be done to see the effects of disposable mask waste in the soil system in real conditions where several confounding variables cannot be controlled.

4.
Sustainability ; 14(11):6847, 2022.
Article in English | ProQuest Central | ID: covidwho-1892983

ABSTRACT

Crop protection still mostly relies on synthetic pesticides for crop pest control. However, the rationale for their continued use is shaded by the revealed adverse effects, such as relatively long environmental persistence that leads to water and soil contamination and retention of residues in food that brings high risks to human and animal health. As part of integrated pest management, biopesticides may provide crop protection, being eco-friendly and safe for humans and non-target organisms. Essential oils, complex mixtures of low-molecular-weight, highly volatile compounds, have been highlighted as major candidates for plant-derived bioinsecticides that are up to the sustainable biological standard. In this review, we screened the insecticidal activity of essential oils or their purified compounds, with focus given to their modes of action, along with the analyzed advantages and problems associated with their wider usage as plant-derived insecticides in agriculture.

5.
IOP Conference Series: Earth and Environmental Science ; 1016(1):011001, 2022.
Article in English | ProQuest Central | ID: covidwho-1806214

ABSTRACT

Intro and GoalCovid-19 pandemic teaches us that climate change impact sometimes incredibly unpredictable. Not only the increase of heat exposure or natural hazard due to extreme weather, but the emergence of new species or the mutation of microorganism due to the changing ecology may harmful for human beings and another organism. This anthropological climate change phenomenon has negatively altered the most fundamental natural resources for living organism: air, water, and soil. Air has been polluted and warming due to human activities. The quantity of freshwater keeps on depleting, while the ground water recharge intervened with chemical and biological contamination. The sustainability of soil as the natural planting media is under threat due to land use conversion and soil quality degradation. Water acidification and temperature increase have been proved to change the salinity of seawater. Those climate change sensitive exposure may affect the immune system of the living things to survive. Those conditions grow the concern for the health status of humans, crops, farmed and wild animals.Preparing immunity on living organism, especially human is a must to maintain our existence. Vaccine is vital to protect human health from emergence virus and disease which may affected by climate change. But does vaccine can against climate change itself? The 7th International Conference on Climate Change (ICCC) is focusing the discussion on the Covid-19 vaccine roles to against the climate change. Focusing and improving the climatic resilience strategies on immune system will be of considerably important to overcome the key climate change sensitive pathways, as well as to support the achievements some global goals in the Sustainable Development Goals (SDG).The 7th ICCC 2021 is organized by Dept. of Master Program of Environmental Science, Post Graduate School of Sebelas Maret University (Surakarta, Indonesia), collaborating with The United Graduate School of Agriculture Science (UGSAS), and Gifu University (Japan).This conference aims to accommodate the new related inspiration and innovation about how to minimize the climate change impact at present. Especially at the 7th ICCC 2021, the purpose is to formulate a comprehensive and efficient strategies on how to increase the effectiveness of Covid-19 Vaccine against the climate change. The e-poster of call for papers presented in Figure 1.List of titles Invited Speakers and Guest Editors, Virtual Conference Disclaimer, Date of conference, Location of organizer and Conference model, Location of participants and overall participant number, Committee List, The success of delivery of the conference, Chairman are available in this Pdf.

6.
Agronomy ; 12(3):601, 2022.
Article in English | ProQuest Central | ID: covidwho-1760296

ABSTRACT

Urban Agriculture (UA), i.e., the production of crops or rearing of livestock in cities, is growing in popularity. Upscaled UA is increasingly gaining support from policy makers, funders, local authorities and other key actors across the globe. Radical forms of the concept, in the form of edible rooftops, urban farms and high-tech growing projects, are becoming more commonplace in our cityscapes;enabling production on a level not witnessed previously. With the mainstreaming of large-scale UA comes the potential to further the social, environmental and economic value of the practice, through job creation, biodiversity enhancement, the creation of short food supply chains and other benefits. Yet, despite this growth, there are barriers to upscaling city farming. Evidence suggests that a core issue surrounds urban soil contamination and hesitation with regards to crops in the city. This paper uses a qualitative approach to explore the UK’s largest urban farm and a spectrum of other UA sites to illustrate such barriers. We reveal how public hesitation, financial barriers and soil quality prevent development. We reflect on the breadth of the issue and call for a more pragmatic approach to these barriers. In doing so, we propose a path forward for enabling UA at scale.

7.
Sustainability ; 14(5):2669, 2022.
Article in English | ProQuest Central | ID: covidwho-1742646

ABSTRACT

The water and soils pollution due to mercury emissions from mining industries represents a serious environmental problem and continuous risk to human health. Although many strategies have been designed for the recovery or elimination of this metal from environmental sources, microbial bioremediation has proven to be the most effective and environmentally friendly strategy and thus control heavy metal contamination. The main objective of this work, using native bacterial strains obtained from contaminated soils of the Peruvian region of Secocha, was to identify which of these strains would have growth capacity on mercury substrates to evaluate their adsorption behavior and mercury removal capacity. Through a DNA analysis (99.78% similarity) and atomic absorption spectrometry, the Gram-positive bacterium Zhihengliuella alba sp. T2.2 was identified as the strain with the highest mercury removal capacity from culture solutions with an initial mercury concentration of 162 mg·L−1. The removal capacity reached values close to 39.5% in a period of incubation time of 45 days, with maximum elimination efficiency in the first 48 h. These results are encouraging and show that this native strain may be the key to the bioremediation of water and soils contaminated with mercury.

8.
Sustainability ; 14(3):1577, 2022.
Article in English | ProQuest Central | ID: covidwho-1687004

ABSTRACT

Cemeteries are sites for the final disposal of human bodies that constitute a source of contamination of soil and water as a result of the cadaveric decomposition generated. The current research performed an initial study on the contamination of soil and water due to the influence of cemeteries and verified compliance with the legislation regulating land use and occupation of Central Ecuador (PUGS) with the aim of proposing an environmental and territorial solution to the problems generated by the mismanagement of cemeteries, through the physicochemical analysis of soil and water and studies of land use compatibility. The results indicate the tendency of contamination caused by the studied cemeteries, since the samples taken in both the rainy and dry season for the measurement of parameters BOD5, COD, DO, pH and electrical conductivity fail to meet the established requirements of the Ecuadorian and international environmental regulations. In addition, land use conflicts were encountered in the cemetery grounds. It is concluded that the existing cemeteries should be subjected to more detailed environmental analysis and subsequently should be treated as security landfills in the closure and post-closure stage. Also, it has been concluded that the cemeteries should not be located in urban or peri-urban areas.

9.
Energies ; 15(2):565, 2022.
Article in English | ProQuest Central | ID: covidwho-1630144

ABSTRACT

Fly ash is the main by-product of coal combustion characterized by a large specific surface area. In addition to oxides, it also contains unburned coal and trace elements. This study aimed to investigate the possibility of using fly ash from pit-coal combustion (CFA) for the treatment of benzene-contaminated soil (S). The CFA was used as a mixture with Portland cement (PC) (70% PC + 30% CFA). The soil was treated with a PC-CFA mixture in amounts of 40, 60, and 80% of soil mass. During the process, the concentration of benzene was monitored with the flame-ionization detector. Produced monoliths (S+(PC-CFA)x) were tested for compressive strength and capillary water absorption. The experiment confirmed that the PC-CFA mixture limited benzene emission. The highest reduction in benzene concentration (34–39%) was observed for samples treated with the PC-CFA mixture in an amount of 80% (S+(PC-CFA)80). The average compressive strength of monoliths S+(PC-CFA)40, S+(PC-CFA)60, and S+(PC-CFA)80 was 0.57, 4.53, and 6.79 MPa, respectively. The water absorption values were in the range of 15–22% dm.

10.
IOP Conference Series. Earth and Environmental Science ; 930(1), 2021.
Article in English | ProQuest Central | ID: covidwho-1569510

ABSTRACT

During the COVID-19 pandemic, the increased use of plastic for personal protective equipment (PPE), single-use plastic bags, and food packaging raised significant environmental concerns. This study aimed to investigate the shape, abundance, and type of microplastics in the sediment of Jakarta Bay, specifically Tanjung Priok, Ancol Beach, and Sunda Kelapa Port. Sediment was collected using an Ekman sediment grab sampler and was extracted using the density separation method. The microplastics were counted and categorized according to the shape under a microscope. The differences in microplastic abundance in three different stations were determined using a one-way ANOVA. The polymer of microplastics was identified using Fourier Transform Infra-Red (FTIR). The results show that the abundance of the microplastics from coastal sediment was highest in the Sunda Kelapa Port (45066.67 ± 5205.13 particle/kg dry weight), which is significantly different (p<0.05) from Tanjung Priok (40533.33 ± 2444.04 particle/kg dry weight) and Ancol Beach (34666.67 ± 2444.04 particle/kg dry weight). Fragments dominated the shape of microplastic in Tanjung Priok, Ancol Beach, and Sunda Kelapa Post, comprising 36%, 40%, 38%, respectively, followed by fiber, film, and pellet. The FT-IR tests indicated that polypropylene (PP), polyethylene (PE), polystyrene (PS), and polyamide are the most prevalent microplastic polymers.

SELECTION OF CITATIONS
SEARCH DETAIL